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Abstract 
This paper describes the architecture and the internal 
structure of “Savage16”, a fully functional general 
purpose reduced instruction set microprocessor, with 
a modified Harvard, five stage pipeline architecture. 
The memory organization and key architecture 
elements are being described, as well as the hardware 
block diagram and the internal structure. A summary 
of the instruction set is presented, along with a brief 
description of the addressing modes.  
Keywords: RISC, pipeline, interrupts, memory 
organization, instruction set. 

 
1. INTRODUCTION 

 

The Savage16 microprocessor is a 16-bit 
general purpose RISC machine [1], based on the 
modified Harvard architecture, allowing 
constants to be stored in the program memory. 

The internal structure is implemented as a five 
stage instruction execution pipeline providing 
better performances than classical sequential 
flow microarchitecture [3].  

 
2. ARCHITECTURE 

 

2.1. Memory Organization 
The Savage16 microprocessor requires 

separate and independent memories for storage 
of the program code and the data. 

Each memory is addressed on dedicated 16bit 
buses, accessing a maximum of 2 x 216 memory 
locations. The program memory word has a 
width of 32bits, the length of a complete 
instruction. The data memory word has a width 
of 16bits, the same as of the internal data buses. 

Without pagination and virtual addressing, the 
total memory size that can be accessed by the 
Savage16 microprocessor is 256kB of program 
code and 128kB of data. If needed, pagination 
can be implemented using external multiplexer 
and some output port pins used as page selectors. 

The structure of the program memory is shown 
in figure 1.  

 

2.2. Internal Register Set 
The Savage16 microprocessor has 16 general 

purpose registers, named R0 – R15, each of them 
16-bit wide. Any of the internal registers can be 

used as either data source or destination for any 
instruction.  

 

 
 

Fig. 1. Program Memory Structure 
 

2.3. Flags 
There are four status flags and four control 

flags in the flag register, as shown in figure 2.  
The status flags are used to evaluate the last 

result of an arithmetic or a logic operation, 
indicating a null result (ZF), a carry or borrow bit 
(CF), a negative result (NF) or an overflow 
condition for signed operations (OF).  

 

 
 

Fig. 2. The Flag Register 
 
There is one control flag (SF) that switches the 

ALU between two modes of operation: unsigned 
integer and signed integer. When the SF flag is 
set, each ALU operation will interpret the two 
operands as signed integers and the operation will 
be done in two’s complement format. The 
negative and overflow flags are set only in signed 
mode operations.  

 



2.4. Interrupt System 
A flexible and user configurable interrupt 

system is implemented in the Savage16 
microprocessor.  

There are 16 different types of interrupt 
requests (IRQs), each one having a designated 
interrupt handler with the starting address 
defined in the interrupt vector table. The first 
four interrupt requests are internally generated in 
case of a fault condition: division by zero, call 
stack overflow, data stack overflow and signed 
overflow. The remaining 12 interrupt requests 
are received on external dedicated pins. 

The interrupt system can be configured using 
three dedicated control flags: IF – global 
interrupt enable flag, MF – masking enable flag 
and EF – signed overflow IRQ enable. 

When the masking flag is set, each interrupt 
request can be disabled individually by means of 
the R15 register, which acts as a 16bit mask for 
the interrupt requests. When the masking flag is 
cleared, R15 returns to its general purpose state. 
The masking bit for each interrupt request is 
detailed in table 1: 

Table 1. Savage16 Interrupt Requests 

Type Address Generated by Mask 
0 0x0001 Division by zero R15[0] 
1 0x0002 Call stack overflow R15[1] 
2 0x0003 Data stack overflow R15[2] 
3 0x0004 Signed overflow R15[3] 
4 0x0005 IRQ_EXT0 pin R15[4] 
… … … … 
15 0x0010 IRQ_EXT11 pin R15[15] 

 
Type 0 request has the highest execution 

priority and type 15 has the lowest.  
 

2.5. Hardware Stacks 
Two hardware stacks have been implemented 

in the Savage16 architecture. This allows for user 
transparent stack operation and better memory 
organization and control.  

The call stack is a 2kB fast SRAM memory 
core organized as 1024 locations x 16 bits and is 
used to store the value of the program counter 
before the execution of a subroutine or interrupt 
handler. A maximum of 1024 recursive calls are 
allowed, as a 1025th call will overflow the call 
stack and generate an overflow interrupt. 

The data stack is used to store the internal 
registers, transfer arguments to subroutines or 
save the flag register. The data stack has been 
implemented as four times the size of the call 

stack to allow more than one register saves per 
each recursive call. 

 

2.6. Input / Output Ports 
There are four 16bit input ports named PINA 

through PIND and another four 16bit output ports 
named PORTA through PORTD.  

Input data is read using the IN instruction and 
data is send to the output ports using the OUT 
instruction. No other port operations are possible. 

 
3. INSTRUCTION SET 

 

The Savage16 microprocessor is a three 
operand machine, each instruction requiring two 
source operands and one destination for the 
result. The source operands can only be found in 
the register file or in the program memory as a 
constant. The result will always be stored in the 
register file. There is no designated accumulator. 

Most of the instructions are executed in one 
clock cycle, but there are some exceptions to this 
rule, as shown in table 2:  

Table 2. Clocks per Instruction 

Instruction Type CPI 
Arithmetic and Logic 1 

Data Transfer 1 
CPU Control 1 

Branch 2 
Call, Ret  2 

Multiplication 11 
Division 19 

 

3.1. Instruction Summary  
There are a total of 61 instructions in the 

Savage16 instruction set. These instructions can 
be split into five major categories: 
a) CPU Control – instructions like NOP, STOP 

or SET do not generate a numeric result but 
alter the microprocessor’s state. The SET 
and CLR instructions allow setting and 
clearing of any status or control flag. 
Multiple flags can be modified in the same 
clock cycle. 

Ex:  SET IF, MF, EF 
b) Arithmetic and Logic – instructions like 

ADD, NEG or XOR generate a numeric 
result as a function of two source operands,  
in unsigned integer or two’s complement 
mode, depending of the state of the SF flag. 

  Ex:  MOV R0, R1  
c) Data Transfer – instructions like MOV, 

LOAD or PUSH copy the content of an 



internal register to another register, a 
memory location, a port or the data stack, or 
load the data from these sources to the 
register file.  The OUT instruction is a very 
versatile one, allowing logic operations with 
the current value of the output port.  

Ex:  OUT PORTA, XOR 0x0101  
d) Branch and Subroutine – instructions like 

JMP, CALL or RET, as well as the 
hardware implicit call of an interrupt 
handler alter the value of the program 
counter and access the call stack. 

Ex:  CALL _delay 
e) Multiplication and Division – these are 

instructions based on finite automata and 
require more clock cycles for execution. 
These instructions generate two results per 
execution. The multiplication will output a 
32bit result, with the last significant byte 
stored in the destination register and the 
most significant byte stored in the 
destination index increment register. The 
division will output a quotient and a 
remainder, with the quotient being stored in 
the destination register and the remainder 
being stored in the destination index 
increment register. 

Ex:  MULT R1, R1, R4 
   

3.2. Addressing Modes  
There are four addressing modes used in the 

Savage16 instruction set: 
a) Immediate addressing – the data is a 

constant stored in the program memory. 
Ex:  MOVI R0, 0x1234 

b) Register addressing – the data is stored in 
one of the internal registers. 

Ex:  MOV R0, R1 
c) In memory immediate addressing – the data 

is stored in the external data memory and is 
accessed using a direct read or write address 
stored in the program memory. 

Ex:  LOAD R0, 0x00a4 
d) In memory through register addressing – the 

data is stored in the external data memory 
and is accessed using an address stored in 
one of the internal registers. 

Ex:  LOAD R0, (R1) 

All data transfers with the external memory are 
performed using the LOAD and STORE 
instructions. This is a fundamental characteristic 
of Savage16’s RISC architecture [1]. 
  

4. INTERNAL STRUCTURE 
 

The block diagram of the Savage16 
microprocessor is represented in figure 3.  

 

4.1. 1st Pipeline Stage – FETCH 
The 1st pipeline stage deals with instruction 

fetch and interrupt request control. There are two 
major design blocks in this stage: 
e) Instruction Fetch – this block includes the 

program counter and the circuitry for 
incrementing and loading the counter. Also, 
if an interrupt request is being served, a 
virtual CALL instruction is inserted into the 
pipeline, to start the execution of the 
corresponding interrupt handler. 

f) IRQ Control – the interrupt request signals 
are sampled and filtered. A request buffer 
stores the requests and the execution of the 
interrupt handlers is done starting with the 
highest priority one and advancing towards 
the lowest priority one. All requests are 
served as long as the signaling pulse width is 
longer than the master clock period and no 
more than one request of the same type 
occurs during the execution of a higher 
priority interrupt handler.  
 

4.2. 2nd Pipeline Stage – DECODE 
The 2nd pipeline stage deals with instruction 

decoding, branch instructions control, and jump 
prediction. Also, the call stack is part of this 
pipeline stage. It includes two major blocks: 
a) Decoder – a fully combinational block which 

generates all the control signals in the 
microprocessor based on the instruction code 
and arguments.  

b) Fetch Control – this is the block that 
implements the 2bit jump predictor [2] and 
the call stack. It generates the program 
counter control signals and it decides when 
an interrupt request is served. 

 

4.3. 3rd Pipeline Stage – READ 
In the 3rd pipeline stage the two operands are 

read from the register file. There are three major 
design blocks in this stage: the Register File, the 
Flag Register and the Hazard Control. 

The hazard prevention circuit [2] detects 
dependencies between consecutive instructions 
and activates the data forwarding paths which 
bypass the register file, speed up execution time 
and avoid the need for the programmer to assure 
enough NOP instructions between dependent 
instructions. 

 



4.4. 4th Pipeline Stage – EXECUTE 
In the 4th pipeline stage the result of the 

operation is computed. This is where all data 
sources like input ports, data stack or data 
memory are multiplexed. 

Also, it is here that the actual branch 
instruction condition is evaluated and the correct 
decision is compared to that of the jump 
predictor, and in case of a mismatch the pipeline 
has to be flushed and CPU cycles are lost. 

 

 

 
5. ASSEMBLER TOOL 

 

The Savage16 microprocessor has a dedicated 
assembler tool, which converts a user assembly 
text file into specific Savage16 machine code.  

The assembler tool identifies branch labels and 
naming aliases and converts them into their 
numeric correspondents, allows for comments 
within the user assembly code, checks for illegal 
characters or wrong register use and chooses 
between the various types of the same instruction 
depending on the addressing mode. 

 

5.1. Programming 
After the machine code has been generated, an 

UART serial transmitter sends the data to an 
auxiliary block of the microprocessor. This block 
multiplexes the address and data busses that 
connect the program memory, and store the 
serially received data in the program memory. 
   When the programming is complete, it 
reconnects the microprocessor with the program 
memory and generates a hardware reset pulse. 

This pipeline stage includes large design blocks 
as the arithmetic and logic unit, the data stack, the 
multiplication and division circuits and the 
SRAM controller. 

 

4.5. 5th Pipeline Stage – WRITE-BACK 
The 5th pipeline stage implements the output 

ports and the circuitry that allows logic operations 
with their current value. 

Also, the write-enable control signals for the 
register file, the flag register and the data memory 
are generated in this final pipeline stage. 

 
 

 
6. CONCLUSIONS 

 

The architecture described in this paper has 
been described in Verilog code and synthesized in 
a medium-performance FPGA. The FPGA had an 
internal block RAM which was used as memory 
cores for program and data storage. 

The Savage16 microprocessor has been used in 
some university projects and is fully functional. 
The projects were written in assembly language 
and programmed into the microprocessor using 
the previously described assembler and 
programming tool. 
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Fig. 3. Savage16 Microprocessor Block Diagram 


