
SAVAGE16 – 16-BIT RISC ARCHITECTURE
GENERAL PURPOSE MICROPROCESSOR

Andrei-Sorin Gheorghe, Corneliu Burileanu

University “Politehnica” of Bucharest
andrei.gheorghe@onsemi.com, cburileanu@messnet.pub.ro

Abstract
This paper describes the architecture and the internal
structure of “Savage16”, a fully functional general
purpose reduced instruction set microprocessor, with
a modified Harvard, five stage pipeline architecture.
The memory organization and key architecture
elements are being described, as well as the hardware
block diagram and the internal structure. A summary
of the instruction set is presented, along with a brief
description of the addressing modes.
Keywords: RISC, pipeline, interrupts, memory
organization, instruction set.

1. INTRODUCTION

The Savage16 microprocessor is a 16-bit
general purpose RISC machine [1], based on the
modified Harvard architecture, allowing
constants to be stored in the program memory.

The internal structure is implemented as a five
stage instruction execution pipeline providing
better performances than classical sequential
flow microarchitecture [3].

2. ARCHITECTURE

2.1. Memory Organization
The Savage16 microprocessor requires

separate and independent memories for storage
of the program code and the data.

Each memory is addressed on dedicated 16bit
buses, accessing a maximum of 2 x 216 memory
locations. The program memory word has a
width of 32bits, the length of a complete
instruction. The data memory word has a width
of 16bits, the same as of the internal data buses.

Without pagination and virtual addressing, the
total memory size that can be accessed by the
Savage16 microprocessor is 256kB of program
code and 128kB of data. If needed, pagination
can be implemented using external multiplexer
and some output port pins used as page selectors.

The structure of the program memory is shown
in figure 1.

2.2. Internal Register Set
The Savage16 microprocessor has 16 general

purpose registers, named R0 – R15, each of them
16-bit wide. Any of the internal registers can be

used as either data source or destination for any
instruction.

Fig. 1. Program Memory Structure

2.3. Flags
There are four status flags and four control

flags in the flag register, as shown in figure 2.
The status flags are used to evaluate the last

result of an arithmetic or a logic operation,
indicating a null result (ZF), a carry or borrow bit
(CF), a negative result (NF) or an overflow
condition for signed operations (OF).

Fig. 2. The Flag Register

There is one control flag (SF) that switches the

ALU between two modes of operation: unsigned
integer and signed integer. When the SF flag is
set, each ALU operation will interpret the two
operands as signed integers and the operation will
be done in two’s complement format. The
negative and overflow flags are set only in signed
mode operations.

2.4. Interrupt System
A flexible and user configurable interrupt

system is implemented in the Savage16
microprocessor.

There are 16 different types of interrupt
requests (IRQs), each one having a designated
interrupt handler with the starting address
defined in the interrupt vector table. The first
four interrupt requests are internally generated in
case of a fault condition: division by zero, call
stack overflow, data stack overflow and signed
overflow. The remaining 12 interrupt requests
are received on external dedicated pins.

The interrupt system can be configured using
three dedicated control flags: IF – global
interrupt enable flag, MF – masking enable flag
and EF – signed overflow IRQ enable.

When the masking flag is set, each interrupt
request can be disabled individually by means of
the R15 register, which acts as a 16bit mask for
the interrupt requests. When the masking flag is
cleared, R15 returns to its general purpose state.
The masking bit for each interrupt request is
detailed in table 1:

Table 1. Savage16 Interrupt Requests

Type Address Generated by Mask
0 0x0001 Division by zero R15[0]
1 0x0002 Call stack overflow R15[1]
2 0x0003 Data stack overflow R15[2]
3 0x0004 Signed overflow R15[3]
4 0x0005 IRQ_EXT0 pin R15[4]
… … … …
15 0x0010 IRQ_EXT11 pin R15[15]

Type 0 request has the highest execution

priority and type 15 has the lowest.

2.5. Hardware Stacks
Two hardware stacks have been implemented

in the Savage16 architecture. This allows for user
transparent stack operation and better memory
organization and control.

The call stack is a 2kB fast SRAM memory
core organized as 1024 locations x 16 bits and is
used to store the value of the program counter
before the execution of a subroutine or interrupt
handler. A maximum of 1024 recursive calls are
allowed, as a 1025th call will overflow the call
stack and generate an overflow interrupt.

The data stack is used to store the internal
registers, transfer arguments to subroutines or
save the flag register. The data stack has been
implemented as four times the size of the call

stack to allow more than one register saves per
each recursive call.

2.6. Input / Output Ports
There are four 16bit input ports named PINA

through PIND and another four 16bit output ports
named PORTA through PORTD.

Input data is read using the IN instruction and
data is send to the output ports using the OUT
instruction. No other port operations are possible.

3. INSTRUCTION SET

The Savage16 microprocessor is a three
operand machine, each instruction requiring two
source operands and one destination for the
result. The source operands can only be found in
the register file or in the program memory as a
constant. The result will always be stored in the
register file. There is no designated accumulator.

Most of the instructions are executed in one
clock cycle, but there are some exceptions to this
rule, as shown in table 2:

Table 2. Clocks per Instruction

Instruction Type CPI
Arithmetic and Logic 1

Data Transfer 1
CPU Control 1

Branch 2
Call, Ret 2

Multiplication 11
Division 19

3.1. Instruction Summary
There are a total of 61 instructions in the

Savage16 instruction set. These instructions can
be split into five major categories:
a) CPU Control – instructions like NOP, STOP

or SET do not generate a numeric result but
alter the microprocessor’s state. The SET
and CLR instructions allow setting and
clearing of any status or control flag.
Multiple flags can be modified in the same
clock cycle.

Ex: SET IF, MF, EF
b) Arithmetic and Logic – instructions like

ADD, NEG or XOR generate a numeric
result as a function of two source operands,
in unsigned integer or two’s complement
mode, depending of the state of the SF flag.

 Ex: MOV R0, R1
c) Data Transfer – instructions like MOV,

LOAD or PUSH copy the content of an

internal register to another register, a
memory location, a port or the data stack, or
load the data from these sources to the
register file. The OUT instruction is a very
versatile one, allowing logic operations with
the current value of the output port.

Ex: OUT PORTA, XOR 0x0101
d) Branch and Subroutine – instructions like

JMP, CALL or RET, as well as the
hardware implicit call of an interrupt
handler alter the value of the program
counter and access the call stack.

Ex: CALL _delay
e) Multiplication and Division – these are

instructions based on finite automata and
require more clock cycles for execution.
These instructions generate two results per
execution. The multiplication will output a
32bit result, with the last significant byte
stored in the destination register and the
most significant byte stored in the
destination index increment register. The
division will output a quotient and a
remainder, with the quotient being stored in
the destination register and the remainder
being stored in the destination index
increment register.

Ex: MULT R1, R1, R4

3.2. Addressing Modes
There are four addressing modes used in the

Savage16 instruction set:
a) Immediate addressing – the data is a

constant stored in the program memory.
Ex: MOVI R0, 0x1234

b) Register addressing – the data is stored in
one of the internal registers.

Ex: MOV R0, R1
c) In memory immediate addressing – the data

is stored in the external data memory and is
accessed using a direct read or write address
stored in the program memory.

Ex: LOAD R0, 0x00a4
d) In memory through register addressing – the

data is stored in the external data memory
and is accessed using an address stored in
one of the internal registers.

Ex: LOAD R0, (R1)

All data transfers with the external memory are
performed using the LOAD and STORE
instructions. This is a fundamental characteristic
of Savage16’s RISC architecture [1].

4. INTERNAL STRUCTURE

The block diagram of the Savage16
microprocessor is represented in figure 3.

4.1. 1st Pipeline Stage – FETCH
The 1st pipeline stage deals with instruction

fetch and interrupt request control. There are two
major design blocks in this stage:
e) Instruction Fetch – this block includes the

program counter and the circuitry for
incrementing and loading the counter. Also,
if an interrupt request is being served, a
virtual CALL instruction is inserted into the
pipeline, to start the execution of the
corresponding interrupt handler.

f) IRQ Control – the interrupt request signals
are sampled and filtered. A request buffer
stores the requests and the execution of the
interrupt handlers is done starting with the
highest priority one and advancing towards
the lowest priority one. All requests are
served as long as the signaling pulse width is
longer than the master clock period and no
more than one request of the same type
occurs during the execution of a higher
priority interrupt handler.

4.2. 2nd Pipeline Stage – DECODE
The 2nd pipeline stage deals with instruction

decoding, branch instructions control, and jump
prediction. Also, the call stack is part of this
pipeline stage. It includes two major blocks:
a) Decoder – a fully combinational block which

generates all the control signals in the
microprocessor based on the instruction code
and arguments.

b) Fetch Control – this is the block that
implements the 2bit jump predictor [2] and
the call stack. It generates the program
counter control signals and it decides when
an interrupt request is served.

4.3. 3rd Pipeline Stage – READ
In the 3rd pipeline stage the two operands are

read from the register file. There are three major
design blocks in this stage: the Register File, the
Flag Register and the Hazard Control.

The hazard prevention circuit [2] detects
dependencies between consecutive instructions
and activates the data forwarding paths which
bypass the register file, speed up execution time
and avoid the need for the programmer to assure
enough NOP instructions between dependent
instructions.

4.4. 4th Pipeline Stage – EXECUTE
In the 4th pipeline stage the result of the

operation is computed. This is where all data
sources like input ports, data stack or data
memory are multiplexed.

Also, it is here that the actual branch
instruction condition is evaluated and the correct
decision is compared to that of the jump
predictor, and in case of a mismatch the pipeline
has to be flushed and CPU cycles are lost.

5. ASSEMBLER TOOL

The Savage16 microprocessor has a dedicated
assembler tool, which converts a user assembly
text file into specific Savage16 machine code.

The assembler tool identifies branch labels and
naming aliases and converts them into their
numeric correspondents, allows for comments
within the user assembly code, checks for illegal
characters or wrong register use and chooses
between the various types of the same instruction
depending on the addressing mode.

5.1. Programming
After the machine code has been generated, an

UART serial transmitter sends the data to an
auxiliary block of the microprocessor. This block
multiplexes the address and data busses that
connect the program memory, and store the
serially received data in the program memory.
 When the programming is complete, it
reconnects the microprocessor with the program
memory and generates a hardware reset pulse.

This pipeline stage includes large design blocks
as the arithmetic and logic unit, the data stack, the
multiplication and division circuits and the
SRAM controller.

4.5. 5th Pipeline Stage – WRITE-BACK
The 5th pipeline stage implements the output

ports and the circuitry that allows logic operations
with their current value.

Also, the write-enable control signals for the
register file, the flag register and the data memory
are generated in this final pipeline stage.

6. CONCLUSIONS

The architecture described in this paper has
been described in Verilog code and synthesized in
a medium-performance FPGA. The FPGA had an
internal block RAM which was used as memory
cores for program and data storage.

The Savage16 microprocessor has been used in
some university projects and is fully functional.
The projects were written in assembly language
and programmed into the microprocessor using
the previously described assembler and
programming tool.

REFERENCES

[1] C. Burileanu, Microprocessor Architecture, Denix,
Bucharest, 1994.
[2] Z. Hascsi, M. Stoian, Processor Architecture, Fair
Partners, Bucharest, 2003.
[3] D. A. Patterson, J. L. Hennessy – Computer
Organization and Design – The Hardware / Software
Interface, Morgan Kaufmann, San Francisco, 2004.

Fig. 3. Savage16 Microprocessor Block Diagram

